Name:			
ID #:			

Midterm 1

$$\int \frac{x^2}{\sqrt{9-x^2}} \, \mathrm{d}x.$$

2. Find the area of the surface obtained by rotating the curve given by

$$y = 2\sqrt{x+1}, \quad 0 \le x \le 3$$

around the x-axis.

3. Find $k \in \mathbb{R}$ such that

$$f(x) = \frac{k}{1 + x^2}$$

defines a probability density function.

4. Compute

$$\int \frac{\mathrm{d}x}{1+\sqrt[3]{x}}.$$

5. For each of the following improper integrals decide whether it converges or diverges. No justification is needed.

(Correct answer = +3 points, wrong answer = 0 points, blank = 1.5 points)

	Integral	Converges	Diverges
(a)	$\int_0^\infty x^{20} e^{-7x} \mathrm{d}x$		
(b)	$\int_{-1}^{1} \frac{1}{x} \mathrm{d}x$		
(c)	$\int_{-\infty}^{\infty} \frac{e^{-x}}{1+x^2} \mathrm{d}x$		
(d)	$\int_0^\infty \frac{e^x}{1 + e^{2x}} \mathrm{d}x$		
(e)	$\int_0^1 \frac{1 + x^2}{1 - x^2} \mathrm{d}x$		
(f)	$\int_{1}^{\infty} \frac{x}{1+x^3} \mathrm{d}x$		
(g)	$\int_{1}^{\infty} \frac{\arctan\left(\frac{1}{x}\right)}{x} \mathrm{d}x$		